ML_14_3 Nyquist plots

```
% Onwubolu, G. C.
% Mechatronics: Principles & Applications
% Elsevier
%
% Mechatronics: Principles & Applications Toolbox Version 1.0
% Copyright © 2005 by Elsevier
%
% Chapter 14: Nyquist plots
%
```

\% Example 14.7: We can use MATLAB to make Nyquist diagrams using
\% nyquist(G), where $\mathrm{G}(\mathrm{s})=$ numg/deng and G is an LTI transfer-function
object.
\% Information about the plots obtained with nyquist(G) can be found by
\% left-clicking the mouse on the curve. The user can find the curve's label, as
well
$\%$ as the coordinates of the point on which you clicked and the frequency.
Right
\% clicking away from a curve brings up a menu if the icons on the menu bar
are
\% deselected. From this menu you can select (1) system responses to be
$\%$ displayed and (2) characteristics, such as peak response.
$\%$ When selected, a dot appears on the curve at the appropriate point. Let
$\%$ your mouse rest on the point to read the value of the characteristic. The
user
\% also may select (3) whether or not to show negative frequencies, (4)
choices
\% for grid on or off, and (5) choice for zooming to (-1,0), (6) returning to
$\%$ full view after zooming, and (7) properties, such as labels, limits, units,
$\%$ style, and characteristics. We can obtain points on the plot by using
$\%[r e, i m, w]=$ nyquist(G), where the real part, imaginary part, and frequency
$\%$ are stored in re, im, and w , respectively, and re and im are 3-D
$\%$ arrays. We can specify a range of w by using $[r e, i m]=$ nyquist(G, w).
\% We use re(:,:)'consider look at Example 14.7 in the text. By the way, the
\% code is simply adapted for other problems by changing the function, $\mathrm{G}(\mathrm{s})$.

'Example 14.7'	\% Display label.
clf	Clear graph on screen.
\%numg=[1 2];	\% Define numerator of G(s).
\%deng=[100];	\% Define denominator of G(s).
numg=750;	\% Define numerator of G(s).
deng=conv([1 6 8],[1 8]);); \% Define denominator of G(s).
'G(s)'	\% Display label.
G=tf(numg, deng)	\% Create and display G(s).
nyquist(G)	\% Make a Nyquist diagram.
grid on	\% Turn on grid for Nyquist diagram.
title('Open-Loop Frequency Response')	
	\% Add a title to the Nyquist diagram.
$w=0: 0.5: 10 ;$	$\%$ Let $0<w<10$ in steps of 0.5.

[re,im]=nyquist(G,w); \quad \% Get Nyquist diagram points for a range \% of w.
points=[re(:,.:)',im(:,.:)',w'] \% List specified range of points in \% Nyquist diagram.

